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Abstract

The development of appropriate ground-based validation techniques is critical to assessing uncertainties associated with satellite data-

based products. Here we present a method for validation of the Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf Area Index

(LAI) product with emphasis on the sampling strategy for field data collection. This paper, the first of two-part series, details the procedures

used to assess uncertainty of the MODIS LAI product. LAI retrievals from 30 m ETM+ data were first compared to field measurements from

the SAFARI 2000 wet season campaign. The ETM+ based LAI map was thus as a reference to specify uncertainties in the LAI fields

produced from MODIS data (250-, 500-, and 1000-m resolutions) simulated from ETM+. Because of high variance of LAI measurements

over short distances and difficulties of matching measurements and image data, a patch-by-patch comparison method, which is more

realistically implemented on a routine basis for validation, is proposed. Consistency between LAI retrievals from 30 m ETM+ data and field

measurements indicates satisfactory performance of the algorithm. Values of LAI estimated from a spatially heterogeneous scene depend

strongly on the spatial resolution of the image scene. The results indicate that the MODIS algorithm will underestimate LAI values by about

5% over the Maun site if the scale of the algorithm is not matched to the resolution of the data.

D 2002 Elsevier Science Inc. All rights reserved.

1. Introduction

Leaf Area Index (LAI), the green leaf area per unit

ground area, is a key biophysical variable influencing

vegetation photosynthesis, transpiration, and the energy

balance of the land surface (Bonan, 1995; Running,

1990). LAI is not only an important driver of most ecosys-

tem productivity models operating at landscape to global

scales (Running, Nemani, Peterson, et al., 1989; Turner,

Cohen, Kennedy, Fassnacht, & Briggs, 1999), but also an

interaction component of some general circulation models

(Buermann, Dong, Zeng, Myneni, & Dickinson, 2001).

LAI, together with other biophysical variables, plays an

important role in measurement and monitoring of land

surface characteristics and in the development of earth-

system models that potentially can predict large-scale

changes accurately enough to assist policy makers in mak-

ing decisions concerning the management of our environ-

ment (Cohen & Justice, 1999). In view of this need, LAI is a

standard product to be delivered from data acquired by the

Moderate Resolution Imaging Spectroradiometer (MODIS)

aboard the Earth Observing System (EOS) Terra platform.

As MODIS LAI data products begin to be available to the

public through the EROS data centre Data Active Archive

Center (EDC DAAC), a sustained validation program is

needed to provide timely feedback to algorithm developers

so that through iterative improvements, product quality can

be improved (Privette et al., 2000).

‘‘Validation’’ is the process of assessing by independent

means the accuracy of data products (Justice et al., 2000;

Privette et al., 2000). In general, validation refers to

assessing the uncertainty of satellite-derived products by

analytical comparison to reference data (e.g., in situ, air-
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craft, and high-resolution satellite sensor data), which are

presumed to represent the target values (Justice et al.,

2000).

Validation of satellite products comes at a time when

international agencies and the global change research com-

munity are evaluating their needs for long-term spaceborne

measurements (Justice et al., 2000). In the coming years,

several moderate and coarse spatial resolution satellite

sensors such as AVHRR, GLI, MERIS, MISR, MODIS,

POLDER, VEGETATION, etc. will concurrently fly, pro-

viding multiple views daily of the Earth surface. These

sensors will provide similar land products, such as vegeta-

tion indices, LAI, FPAR, albedo, and land cover (Justice

et al., 2000; Weiss et al., 2001). Establishing standard

methods and protocols for validation of these products will

enable broad participation in validation campaigns. As a

result, high-quality and consistent data sets of known

accuracy with product continuity between instruments and

missions will foster product standardization and synergy

from these sensors (Justice et al., 2000).

NASA has developed validation protocols and organized

several pre- and post-launch validation campaigns. The

‘‘BigFoot’’ program is one such protocol designed for the

validation of MODIS land cover, LAI, FPAR, and NPP

products, providing guidance for field data collection, sam-

pling strategy, and scaling algorithms to compare to the

ground, airborne and satellite sensor data (Cohen & Justice,

1999). The Prototype Validation Exercises (PROVE) were

designed and carried out as a prototype of EOS episodic

validation campaigns (Privette et al., 2000). The Southern

Africa Regional Initiative 2000 (SAFARI 2000) took place

during 1999 and 2000 in Southern African as an extensive

validation effort associated with EOS Terra and Landsat 7.

Internationally, the VALidation of European Remote sens-

ing Instruments (VALERI) project is designed to provide

coordinated ground measurements of LAI, FPAR, albedo

and similar variables for developing and testing new gen-

eration algorithms and validating biophysical variable prod-

ucts. Rather than being aimed at a specific sensor program,

this project allows the inter-comparison between sensors

and algorithms (Weiss et al., 2001).

The MODIS land discipline team (MODLand) uses field

and tower measurements, fine resolution (less than 10 m

Instantaneous Field of View, IFOV), and high resolution

(from 10 to 30 m IFOV) imagery from airborne and satellite

sensors, to compare with the MODIS 1 km product (Justice

et al., 2000). However, the uncertainty assessment of these

products is not straightforward. The 1-km resolution of the

MODIS LAI product significantly exceeds the plot size

typically used for LAI and FPAR field measurements. Thus,

a procedure is needed to correlate the scale of the LAI

measurements to the scale of the MODIS pixels using high-

resolution imagery. Except for a few studies directly

addressing validation such as comparing albedo (Lucht

et al., 2000; Stroeve et al., 2001), Bidirectional Reflectance

Distribution Function (BRDF) (Lewis et al., 1999; Haute-

coeur & Leroy, 2000), and LAI (Weiss et al., 2001) with

field data, there have been a limited number of comparisons

between ground-based and satellite-derived land variables.

The paucity of such work to date is an indication of the

logistic and practical difficulties in the comparison. Valida-

tion work still requires accurate and efficient procedures to

assess the uncertainties of moderate resolution satellite

products.

This paper, which is divided into two parts, attempts to

assess the uncertainty of the MODIS LAI product via

comparisons with ground and high-resolution satellite data,

and provide guidance for field data collection and sampling

strategies. Part I, presented here, proposes a region or patch-

based comparison method, which can be implemented on a

routine basis, and addresses the issue of spatially scaling

ground-based point measurements to the scale of satellite

observations. In lieu of using MODIS data, we provide

comparisons of validated 30 m ETM+ LAI retrievals to

those derived from the 250-, 500-, and 1000-m resolutions

of simulated MODIS data (MODIS data were largely

unavailable during the period of campaigns as it was too

soon after launch). The estimation of uncertainty of MODIS

LAI data from SAFARI 2000 wet season campaign is the

main task in this paper. Part II applies hierarchical analysis

to data from campaigns at the Maun (Botswana), Harvard

Forest (USA) and Ruokulahti Forest (Finland) to obtain

multiscale variation in the LAI data, and proposes a ground

sample collection strategy.

2. SAFARI 2000 wet season Kalahari Transect campaign

SAFARI 2000 is an organizational umbrella for various

studies, which together should improve understanding of the

sources, transformations, dynamics, sinks and impacts of

atmospheric aerosols in Southern Africa (Swap & Anne-

garn, 1999). A major component of SAFARI 2000 is remote

sensing research and validation with NASA EOS data

products (Privette et al., 2002). An international group of

researchers completed an intensive field campaign in Bot-

swana and Zambia between February 28 and March 18,

2000. These dates coincided with the first weeks of MODIS

Earth view because of launch delay. The activity was the

second of four planned intensive campaigns of SAFARI

2000. The field sites are located along the International

Geosphere–Biosphere Program (IGBP) Kalahari Transect

(KT). The KT extends over a large rainfall gradient (200 to

1000 mm/year mean annual rainfall) in an area of uniform

soils, the Kalahari sands. The vegetation extends from

equatorial forest to subtropical, arid shrubland of the Kala-

hari desert (Dowty et al., 2000).

We collected field data to validate the MODIS LAI

algorithm. Ground measurements of LAI, leaf hemispher-

ical reflectance and transmittance and canopy transmittance

were taken using the LAI-2000 plant canopy analyzer,

AccuPAR ceptometer, LI-1800 portable spectroradiometer
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and ASD handheld spectroradiometer during the period

from March 3 to March 18, 2000, in Botswana. LAI was

intensively measured at four different sites, Pandamatenga,

Maun, Okwa and Tshane (from north to south in Bot-

swana), where the vegetation ranged from moist closed

woodland to arid grasslands with scattered shrubs.

2.1. Sampling methods

At each of the four sites, data were collected within a

1�1 km region on three transects of 750 m and on a

250� 300 m grid (Fig. 1). For the transects, measurements

were made along three straight, parallel lines, ‘‘B’’, ‘‘A’’,

and ‘‘N’’ from south to north, each of 750 m in length. We

took LAI measurements at 25-m intervals from west to

east, for a total of 31 sample points on each 750-m transect.

Each sample point was labeled as A375W, A00, A375E. . .
and so on. ‘‘A00’’ represents the middle sample point on

the ‘‘A’’, and ‘‘A375W’’ represents the sample point

located 375 m west of A00. We used a Garmin II+ Global

Positioning System (GPS) receiver in ‘‘averaging’’ mode

(allows more precise determination), which had a typical

uncertainty of about 12 m, for sample point geoferencing.

The GPS system still had artificial noise during the cam-

paign. At a minimum, we collected GPS points at the ends

and middle of each transect, i.e., at three points for each

transect. The points in-between those geolocated points

were determined with a Suunto KB-20 Handbearing com-

Fig. 1. Sampling scheme of SAFARI 2000 wet season Kalahari Transect (KT) campaign.
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pass and the Haglof Distance Measuring Equipment (DME)

201, calibrated on-site and accurate to 1%.

On the grid, measurements were taken at a 50� 50 m

resolution in a rectangular area, located at the southwest

corner of the 1 km2 site. There were 6 east–west oriented

lines (300 m in length) and 7 south–north oriented lines

(250 m in length) for a total of 42 sample points. Each line

was named A, B, C, D, E, and F from north to south. There

were 7 sample points, numbered 1 to 7 from west to east, on

each line (A, B, C, D, E, or F). Therefore, we named the

sample points in this rectangular area as F1, F2, . . ., F7
. . .and so on. The measurements were taken as follows:

from F1 to F7, E7 to E2, D2 to D7, C7 to C2, B2 to B7, A7

to A1, and then to E1.

At the Maun site, we also collected another 34 measure-

ments around the scaffolding tower (19.91641jS,
23.5594jE), set up by the Max Plank Institute. This tower

was located at 1-km northwest of the 1-km intensive study

area. The sampling method was similar to the grid measure-

ment. The vegetation type was savanna. We labeled this site

as T (tower). This tower site contained older, sparser

vegetation. We primarily measured this Tower site in order

to compare its LAI value with our 1-km study area’s LAI

data, and wanted to make sure the vegetation at both sites

characterized with the same methods and instruments. This

facilitated relating the LAI differences to structural and

vegetation type differences.

2.2. LAI measurements

We measured LAI using the LAI-2000 plant canopy

analyzer, which consists of a LAI-2070 control unit and a

LAI-2050 sensor head. The control unit has connectors for

two sensor heads, two connectors for other LI-COR sensors,

and a connector for RS-232 communication. The sensor

head projects the image of its nearly hemispheric view onto

five detectors arranged in concentric rings (approximately

0–13j, 16–28j, 32–43j, 47–58j, 61–74j). Radiation

above 490 nm is not measured (LI-COR INC., 1992).

Three LAI-2000 units were used in this campaign, two in

the field, and the other in an open space as a reference for

incident radiation. The two sample units were calibrated

against the reference unit under overcast conditions or shortly

before sunset, prior to field measurements. The calibration

procedures are given in the LAI-2000 Plant Canopy Analyzer

Instruction Manual, Chapter 4-1 (LI-COR INC., 1992). The

reference unit was set in remote logging mode at a sampling

frequency of one per 60 s.

The LAI-2000 measures attenuation of diffuse sky radi-

ation at five zenith angles simultaneously. LAI measure-

ments were done mostly right before and after sunset. Some

measurements in Pandamatenga and Maun were taken

during dawn. In Tshane, one set of measurements was taken

in the afternoon under overcast conditions.

All the measurements were taken by holding the sensors

opposite to the direction of the sun. A 90j mask was used in

Pandamatenga and Maun to prevent interference caused by

the operator’s presence. A 270j mask was used in Okwa

and Tshane because of the heterogeneous distribution of

shrubs and trees on the grassland. The same mask was used

for the reference sensor as well.

From beneath a canopy, the sensor’s potential field of

view resembles an inverted cone whose radius (r) is roughly

three times the canopy height. The sensor’s view limit is

74j, the tangent of which is 3.48. A value of 3 serves as a

working number, because of the reduced probability that

foliage at the edge of the sensor’s field of view will be

significant (LI-COR INC., 1992). Therefore, the measured

resolution (area) of each site is

Area ¼ pr2 ¼ pð3hÞ2; ð1Þ
where h is the tree or plant height. The woody plant height

on the Kalahari Transect was measured by Scholes et al. (in

press) during this campaign. The average plant height at the

four sites (Scholes et al., in press) is listed in Table 1. The

actual measured area was three fourths of the total area in

Pandamatenga and Maun, and one fourth in Okwa and

Tshane. The percentage overlap between two adjacent

measurements is also listed in Table 1.

3. Heterogeneity of measured LAI at the SAFARI 2000

sites

3.1. Statistical analysis of means

Histograms of measured LAI along the transects and the

grid are shown in Fig. 2. The mean and standard deviation

are given in Fig. 3. One immediate question concerns the

similarity of the grid and transect measurements. Are they

sampling the same population? A t-statistic was used to test

the null hypothesis that the mean values of two groups are

Table 1

Plant height (Scholes et al., in press) and LAI-2000 measured area

Site Height

(m)

Radius

(m)

Total area

(m2)

Actual area

(m2)

Overlap at

transect (%)

Overlap at

grid (%)

Pandamatenga 11.4 34.2 3674.53 2755.89 39.36 0

Maun 6.0 18 1017.88 763.41 0 0

Okwa 2.2 6.6 136.85 34.21 0 0

Tshane 3.7 11.1 387.07 96.77 0 0

Transect measurements were taken at 25-m intervals, while grid measurements were taken at a 50� 50 m resolution.
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equal. The t-test results (Table 2) indicate that the means of

the transect and grid measurements are statistically different

in Maun and Okwa at p < 0.05 and Pandamatenga at

p < 0.10. Tshane, on the other hand, shows a very high

probability of equal means. These results indicate that LAI

in three of the four sites are not spatially uniform. For the

tower site (T) at Maun, the mean LAI value, 1.04, is smaller

than those from transect and grid measurements at Maun.

3.2. Semivariance analysis

The spatial heterogeneity of measured LAI can be

quantitatively described by estimating the spatial depend-

ence of LAI within each site. A useful measure of spatial

variation in the values of a variable Z is the semivariance,

which is half the average squared difference in Z values

between pairs of sample points. For a stationary and

isotropic spatial process, the semivariance c in Z values

between all pairs of points Z(x) and Z(x + h) separated by

distance h (referred to as ‘‘lag’’) can be estimated from

sample data (Woodcock, Collins, & Jupp, 1997),

cðhÞ ¼ 1

2NðhÞ
X
NðhÞ

½Zðxþ hÞ � ZðxÞ�2: ð2Þ

Here N is the number of pairs of sample points (x, x + h)

separated by distance h.

Fig. 3. Comparison between transect and grid LAI measurements at

Pandamatenga, Maun, Okwa, and Tshane. The dots and error bars represent

means and standard deviations, respectively.

Table 2

t-Test of the means of the transect and grid LAI measurements

Site name

Pandamatenga Maun Okwa Tshane

0.0725 0.0269 0.0023 0.9952

The null hypothesis is that the LAI means of the two groups are equal.

Here, p values are given.

Fig. 2. Histograms of transect and grid LAI measurements at the four SAFARI 2000 wet season campaign sites: (a) Pandamatenga, (b) Maun, (c) Okwa, and

(d) Tshane.
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The key to investigation of the semivariance is the

construction of a semivariogram, which is a plot of the

semivariance, c(h), as a function of distance h. There are

several important features noteworthy in a sample semi-

variogram. At relatively short distance h, the semivariance is

small, but increases with distance between pairs of sample

points. At a distance referred to as ‘‘range’’, the semi-

variance levels off to a relatively constant value, referred

to as the ‘‘sill’’. This implies that beyond this range, Z

values are no longer spatially correlated. Within this range,

Z values are more similar when the pairs of sample points

are closer together. The semivariograms of LAI (Fig. 4) at

the four sites show a similar structure, with a small range of

less than 50 m. This means that the LAI values among the

sample points are not spatially related except for direct

neighbors along the transects which are 25 m apart, indicat-

ing a high level of heterogeneity in the spatial distribution of

LAI. This effect is also evident in simple plots of the

transect LAI measurements (Fig. 5). We conclude that the

variance in LAI within these sites is large and little spatial

structure exists in measurements collected at 25-m intervals.

4. Validation of the MODIS algorithm LAI at Maun

Our objective here is to validate 1-km2 LAI values

derived from MODIS data through comparison with field

measurements. The first challenge is how to validate coarse

resolution MODIS LAI with fine resolution measurements

from the four 1-km2 sites, each with an area equivalent to

only one MODIS pixel, but imperfectly aligned with the

pixel. In total, there are only four pairs of pixels at 1-km2

resolution between the field measurements and MODIS

data. In addition, if the spatial registration is not accurate,

Fig. 4. Semivariograms of field measurements at Pandamatenga, Maun,

Okwa, and Tshane.

Fig. 5. LAI measurements along the transects from the sample points located 375 m west of the middle sample points to those located 375 m east. (a)

Pandamatenga, (b) Maun, (c) Okwa, and (d) Tshane.
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some of the field measurements may fall out of the 1-km2

MODIS pixel, and this makes the comparison less reliable.

Therefore, we propose to first validate and produce a LAI

map of a 10� 10 km region from ETM+ data based on our

field measurements. Using this ETM+ LAI map, we can

validate the MODIS LAI product. In view of the large

amount of work associated with field and satellite data

processing, classification, atmospheric correction, geo-regis-

tration, etc., we use data from the Maun site only to illustrate

our strategy for validation of the MODIS LAI product.

4.1. The MODIS LAI and FPAR algorithm

For each of the land pixel, the operational MODIS

algorithm ingests up to seven atmosphere-corrected surface

spectral bi-directional reflectance factors (BRFs) and their

uncertainties and outputs the most probable values of LAI,

FPAR and their respective dispersions. The theoretical

basis of the algorithm is given in Knyazikhn, Martonchik,

Myeni, Diner, and Running (1998) and the implementation

aspects are discussed in Knyazikhin et al. (1999). A Look-

Up Table (LUT) method is used to achieve inversion of the

three-dimensional radiative transfer problem (Myneni et al.,

in press).

4.2. Selection of a 10�10 km ETM+ region

We selected a subset of a Landsat ETM+ image from

April 3, 2000 (Fig. 6a), and a subset of an IKONOS image

from March 30, 2000, with the point A00 of the Maun site

as the central point. The ETM+ and IKONOS subsets have

spatial resolutions of 30 and 4 m, respectively, and cover a

10� 10 km region. Both images were in the Universal

Transverse Mercator (UTM) projection and were corrected

Fig. 6. (a) Color RGB image from Bands 4, 3 and 2 of a 10� 10 km region

of the Maun site from an ETM+ image. (b) Vegetation classification map

for the 10� 10 km region.

Fig. 7. Color RGB image from Bands 4, 3 and 2 of a 1�1 km region of the

Maun site. Panel (a) is IKONOS data and panel (b) is ETM+ data. Yellow

‘‘ + ’’ represents sampling points, and green ‘‘ + ’’ represents the positions

where photographs were taken.
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for atmospheric effects using the standard SMAC method

(Rahman & Didieu, 1994; Häme et al., 2001). The IKO-

NOS image was mainly used to help identify features and

regions. We also have 33 photographs with GPS navigation

readings. The ETM+ subset was classified into vegetation

classes, shrubs and savanna (Fig. 6b), using an unsuper-

vised classification approach, with the aid of field photo-

graphs and an IKONOS image. Savanna and shrubs occupy

65% and 35% of the total area, respectively.

4.3. Validation of 1�1 km ETM+ LAI

We now focus on a 1�1 km area in the ETM+ subset,

with the point A00 as the central point. This region

corresponds to where the field measurements were taken

in Maun. We ran the MODIS LAI algorithm using ETM+

surface reflectances at RED and NIR band to produce

ETM+ LAI fields, and compared the retrieved fields with

in situ measurements at 30-m resolution.

4.3.1. Image segmentation

The problem is how to compare the field and ETM+ LAI

data? A pixel-by-pixel comparison is not feasible for several

reasons. First, the area (34–2756 m2) measured with LAI-

2000 (Table 1) is either larger or smaller than the resolution of

the ETM+ (900 m2). Therefore, the individual LAI measure-

ments are not representative of 30 m ETM+ pixels, and the

ground measurements and ETM+ pixels cannot be reliably

matched. Second, the GPS readings at the measurement sites

are not accurate. The measurements and photographs did not

give the same GPS readings (accurate GPS estimates were

possible only 4 months after the campaign). Third, because of

the high variance of LAI measurements over short distances,

there are some errors associated with field measurements and

mismatch between measurements and image pixels. It is

essential to identify multi-pixel patches in the image data to

validate the algorithm.

In the analysis of remotely sensed imagery, pixels are

assumed to be representative samples of objects in the

scene. When pixels are large relative to ground objects,

individual pixels often cover parts of two or more objects,

resulting in mixed pixels, and the effectiveness of analysis is

undermined (MacDonald & Hall, 1980; Woodcock &

Strahler, 1987). Similarly, when pixels are small relative

to the objects, internal variance of the objects adversely

affects the analysis (Cushnie, 1987; Markham & Town-

shend, 1981). The ideal situation is when the elements of

analysis in the image correspond to homogenous objects in

the scene (Woodcock & Harward, 1992). The objective of

image segmentation is to partition the image into a set of

regions, which correspond to homogeneous objects in the

ground scene and will serve as the basis of further analysis

(Beaulieu & Goldberg, 1989). Therefore, the spectral attrib-

utes of regions defined via segmentation may more accu-

rately be grouped into categories than the pixels comprising

the region when taken singly (Woodcock & Harward, 1992).

We use a multiple-pass region-based algorithm named

nested-hierarchical scene model (Woodcock & Harward,

1992) segmentation procedure to generate groups of ETM+

pixels, or regions, corresponding to patches of vegetation to

serve as the basis of validation of the MODIS LAI algorithm.

The multiple-pass approach allows slow and careful growth

of regions while inter-region distances are below a global

threshold. Past the global threshold, a minimum region size

parameter forces development of regions in areas of high

local variance. Maximum and viable region size parameters

limit the development of undesirably large regions (Wood-

cock &Harward, 1992). The advantage of this model is that it

can recognize different scales of objects in a scene. Each level

in the hierarchy is nested, or composed of objects or catego-

ries of objects from the preceding level, and different objects

may have distinct attributes (Woodcock & Harward, 1992).

Fig. 7a displays the IKONOS image, combined with

Bands 4, 3, and 2. Fig. 7b shows the same area, but with the

coarser resolution ETM+ image, of which individual pixels

are visible. The sampling points of measurements (yellow

‘‘ + ’’) and the positions of photographs taken (green ‘‘ + ’’)

are also shown in Fig. 7a and b. From a simple visual

examination of these images, it is apparent that the land-

scape is heterogeneous and patchy, and the LAI measure-

ments were made on different patches. The segmentation

algorithm grouped pixels into patches based on their spec-

tral similarity and adjacency, with Bands 3, 4 and 5 of the

ETM+ image as inputs. The resulting map (Fig. 8) yielded

patches corresponding to identifiable features in the land-

scape. There are 15 patches in total. Most of the measure-

ments fall in patches 3, 5, 6, 7, 8, 9, 10 and 12. According to

the land cover map (Fig. 6b), patches 3, 5, 6 and 10 are

mostly shrubs, and patches 7, 8, 9, 12 are mostly savanna.

The LAI measurements were grouped by patch, excluding

points located at patch boundaries, because patch member-

ship was ambiguous. Patches 7 and 8 were merged, because

Fig. 8. Map of a 1�1 km region at Maun using the segmentation procedure

described in the text. Patches 1, 2, 4, 7, 8, 9, 12, 13 and 15 are savanna

patches. Patches 3, 5, 6, 10, 11, and 14 are shrub patches.
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most of the measurements on the line ‘‘A’’ are located at the

edge of patches 7 and 8, both of which were savanna. There

is one more savanna patch ‘‘T’’, as mentioned before. Thus,

there are eight groups (patches) of LAI measurements, with

four of savanna and four of shrubs. We calculated the mean

LAI for each group, and use the t-statistic to test whether the

means of any two patches are equal. The results (Table 3)

show that groups from the same land cover class generally

have a higher probability of equal mean LAI value than

those of different classes, which are always significantly

different, except for group 6 and group 12 (Table 3). Image

segmentation thus helped in regrouping the measurements.

4.3.2. Validation of the MODIS LAI algorithm at 30-m

resolution

To test the MODIS LAI algorithm at 30-m resolution, it

was executed (Knyazikhin, Martonchik, Diner, et al., 1998;

Knyazikhin, Martonchik, Myneni, Diner, Running, 1998)

for each pixel in the ETM+ image using Band 4 (NIR) and

Band 3 (RED) reflectance data, and the patch map to define

Table 3

t-Test of the LAI means of different regions

Class type Region number Region number

3 5 6 10 7 + 8 9 12 Tower

Shrub 3 1.0000

5 0.3614 1.0000

6 0.4108 0.0108 1.0000

10 0.7928 0.4862 0.2412 1.0000

Savanna 7 + 8 0.0241 0.0003 0.0713 0.0050 1.0000

9 0.0993 0.0035 0.2539 0.0349 0.5922 1.0000

12 0.2747 0.0220 0.7243 0.1259 0.1722 0.4569 1.0000

Tower 0.0085 0.0001 0.0382 0.0010 0.8112 0.4309 0.0901 1.0000

The null hypothesis is that the LAI means of the two groups are equal. Here, p values are given.

Fig. 9. (a) Patch-by-patch comparison of field measurements and MODIS algorithm based LAI from 30-m resolution ETM+ data at Maun. (b) Pixel-by-pixel

comparison of retrieved LAI of all pixels using savanna Look-Up Table (LUT) (x-axis) and shrubs LUT ( y-axis). This figure shows that if we define all pixels

in one scene as savanna only or shrubs only, savanna LUT generally gives a higher LAI value than shrub LUT. (c) Patch-by-patch comparison of LAI retrievals

from savanna and shrub LUT with field measurements.
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biome type. Pixels from patches 3, 5, 6, 10 were retrieved

with the shrub Look-Up Table (LUT), and pixels from

patches 7, 8, 9, 12 with the savanna LUT. The mean values

of the retrieved and measured LAI of each patch are shown

in Fig. 9a. Most of these are along the 1:1 line. The savanna

patches have LAI values consistently lower than the shrubs.

The consistency between LAI retrievals and field measure-

ments indicates satisfactory performance of the algorithm.

To investigate the effect of misclassification on LAI

retrievals, the LAI values of all pixels were retrieved using

the savanna LUT only and the shrub LUT only. Fig. 9b is the

scatter plot of these retrievals. For a pixel with the same

surface reflectance, the savanna LUT generally gives a higher

LAI value than the shrub LUT. The difference is small for

pixels with LAI values less than 2, but larger for higher

values. In this case most pixels have LAI values less than 2,

with a mean of 1.32 for shrub LUT retrievals and 1.45 for

savanna LUT retrievals. For an individual patch, however, the

misclassification effect can be larger. Fig. 9c shows the

comparison of patch mean LAI of the measurements and

retrievals using the different LUTs. If the shrub pixels are

retrieved using the savanna LUT, the patch mean LAI will be

higher than the measurements. The difference can be as high

as 0.5 LAI for patches 5 and 10. Therefore, it is essential to

Fig. 10. The mean and standard deviation (STD) of RED reflectance, NIR reflectance, and NDVI as a function of spatial resolution: (a) mean of RED, (b) STD

of RED, (c) mean of NIR, (d) STD of NIR, (e) mean of NDVI, and (f) STD of NDVI.
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identify the cover type accurately for validation and opera-

tional mapping of LAI.

5. Resolution effects on MODIS LAI retrievals

A common approach to study the effects of resolution

between fine and coarse resolution results is to compare data

from sensors with varying resolutions or to aggregate fine

resolution data to larger cell sizes (Chen, 1999; Pax-Lenney

& Woodcock, 1997; Tian et al., in press). The SAFARI 2000

wet season campaign was conducted 2months after Terra was

launched. Unfortunately, this campaign period was during the

first weeks of MODIS operation, and there were no MODIS

reflectance data and products during that period. Therefore,

we created coarse resolution data from the 30-m resolution

ETM+ data. The ETM+ data from Bands 3 and 4 in the

10� 10 km study area were spatially degraded to generate

data of 240-, 480-, and 960-m resolutions. The program used

to degrade the ETM+ image was developed as part of an

effort to simulate the spatial resolution of MODIS-N sensor

from ETM+ imagery using a convolution algorithm devel-

oped by Barker et al. (1992). The ETM+ data are forward

Fourier transformed, multiplied by the transfer function of a

Gaussian blur filter and then inverse Fourier transformed. The

resulting output array is reduced to the appropriate size

through nearest neighbor re-sampling (Barker et al., 1992;

Pax-Lenney & WoodCock, 1997). The aggregated 240-,

480-, and 960-m resolutions correspond closely to MODIS

resolutions of 250, 500, and 1000 m, which are used through

the remainder of the text. The spatially degraded data for

each band, however, retain the ETM+ spectral bandwidths.

At coarse resolution, we label the class type of each pixel by

majority rule.

5.1. Relation between changes in reflectance and spatial

resolution

To investigate the effect of changes in resolution on

MODIS LAI retrievals, an understanding of the relation

between changes in reflectance and spatial resolution is

needed. Fig. 10 shows variations in the mean and standard

deviation (STD) of RED and NIR reflectances, and NDVI,

as a function of spatial resolution. NDVI was calculated

directly from coarse resolution reflectance data.

Without consideration of the land cover type, the overall

mean values (RED, NIR, NDVI) of the image show little or

no change with resolution. However, the mean values for

different classes change quickly. For a class with a higher

(lower) mean value, its mean value decreases (increases) as

Fig. 11. Pixel-by-pixel comparison of LAI values averaged from 30-m resolution and retrieved directly from reflectance at resolution of (a) 250 m using shrub

look-up table (LUT) only, (b) 500 m using shrub LUT only, (c) 1000 m using shrub LUT only, (d) 250 m using savanna LUT only, (e) 500 m using savanna

LUT only, and (f) 1000 m using savanna LUT only.
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resolution decreases, with the overall mean value remaining

invariant. That is, the difference in the mean values between

savanna and shrubs becomes smaller. The decrease in the

STD with coarser resolution is obvious. We conclude that

spatial aggregation results in a decrease in the variance of the

data and a smaller discrepancy in mean reflectance between

different classes. This effect occurs because the number of

mixed pixels in the image and the degree of spatial mixture

within pixels increase as the spatial resolution becomes

coarser. As a result, there will be some loss of spectral

separability between the land cover classes defined at finer

spatial scales.

5.2. Non-linearity in LAI retrievals from one land cover type

The goal of scaling is to establish values of LAI retrieved

from coarse resolution sensor data to equal the arithmetic

average of LAI values retrieved independently from fine

resolution sensor data (Hall, Huemmrich, Goetz, Sellers, &

Nickeson, 1992; Tian et al., in press). Coarse resolution LAI

can be derived by two methods. First, LAI values are

generated from ETM+ reflectance data using the MODIS

algorithm at 30-m resolution, and then averaged over space to

estimate LAI at coarse resolutions (method 1). This is the

correct way. Second, LAI values are generated directly from

the simulated coarse resolution reflectance data using the

same MODIS algorithm (method 2). For each of the coarse

resolution pixels, the following equation quantifies the differ-

ence in LAI (DL) retrievals between method 1 and method 2.

DL ¼ ðLAImethod 1 � LAImethod 2Þ=LAImethod 1: ð3Þ

If DL is positive, method 2 underestimates the LAI

value; otherwise, method 2 overestimates the LAI value.

Theoretically, any algorithm will not over- or underestimate

the LAI value if the input data are homogeneous, or if the

algorithm is linear with respect to surface reflectance data.

For simplicity, assume that there is only one land cover

type in the 10� 10 km image, either savanna or shrubs. This

assumption eliminates the effect of mixture of land cover

types. The overall mean reflectance and NDVI do not change

appreciably as the resolution decreases, as illustrated in Fig.

10. Does the overall mean LAI not change either? Fig. 11 and

Table 4 compare the LAI retrievals from method 1 and

method 2. The mean DL values are always positive, that is,

the LAI values are underestimated when retrieved from

coarse resolution data. The algorithm underestimates more

when using savanna LUT than when using shrub LUT given

the same reflectance values. The underestimation is larger as

spatial resolution decreases.

Table 4

Means of difference in LAI (DL) retrievals between method 1 and method 2

from one land cover type

Land cover Resolution

250 m (%) 500 m (%) 1000 m (%)

Shrubs 5.6 6.39 7.63

Savanna 8.6 10.09 11.9

Fig. 12. Overall standard deviation as a function of the difference in LAI

(DL) between averages from 30 m resolution and retrievals directly from

reflectance at (a) 250 m, (b) 500 m, and (c) 1000 m resolution.

Table 5

Means of difference in LAI (DL) retrievals between method 1 and method 2

from two land cover types

Land cover Resolution

250 m (%) 500 m (%) 1000 m (%)

Shrubs 15.1 16.8 16.3

Savanna 0.3 3.4 2.6

Shrubs + Savanna 4.3 4.6 5.1
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One interesting result is that there are some pixels where

method 2 overestimates LAI values. This could be possibly

noise. Let the overall standard deviation of each coarse

resolution pixel’s reflectance be (Wang et al., 2001),

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rRED

RED

� �
rNIR

NIR

� �s
: ð4Þ

Here, RED(NIR) and rRED (rNIR) are the mean and standard

deviation of sub-pixel level reflectance of band 3 (band 4) of

coarse resolution pixels, respectively. Pixels that contain

homogeneous sub-pixels of reflectance will have a small r,
and vise versa. Fig. 12 shows r as a function of DL. The r
value increases as DL increases. Negative DL values always

correspond to the smallest r values. Therefore, the over-

estimated values are mainly from pixels with the most

homogeneous sub-pixel reflectance. It is possible that the

overestimated value is either due to limitations of the

algorithm or due to measurement errors. When using the

savanna LUT, the mean overestimated DL value is � 5.03%,

� 6.61% and � 2.52%, at 250-, 500-, and 1000-m resolu-

tions, respectively. These values are much smaller than the

Fig. 13. Pixel-by-pixel comparison of LAI values average from 30-m resolution and retrieved directly from reflectance at resolution of (a) 250 m for all pixels,

(b) 500 m for all pixels, (c) 1000 m for all pixels, (d) 250 m for shrub pixels only, (e) 500 m for shrub pixels only, (f) 1000 m for shrub pixels only, (g) 250 m

for savanna pixels only, (h) 500 m for savanna pixels only, and (i) 1000 m for savanna pixels only.
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mean underestimated DL values (14.34%, 14.14%, and

14.28%, respectively). Therefore, the overestimated value

may be considered as noise.

The MODIS LAI algorithm being non-linear will

always underestimate the retrieved LAI from coarse res-

olution reflectance data, even though the overall mean

reflectance and NDVI of the image do not change with

resolutions. The more heterogeneous the reflectances at

fine resolution, the larger the underestimated LAI value

will be. As spatial resolution decreases, the underestima-

tion becomes larger. The magnitude of underestimation is

dependent on the vegetation type. At 1-km resolution, the

algorithm underestimated the LAI values by about 8%

from shrub LUT and 12% from savanna LUT at the Maun

site (Table 4, Fig. 11), respectively, if the resolution of the

data is not considered in the retrieval technique. There-

fore, it is necessary to scale the algorithm to resolutions of

satellite data (Tian et al., 2000, in press). It should be

noted that the MODIS LAI and FPAR operational algo-

rithm addresses this issue explicitly through canopy struc-

ture dependent parameters, which imbue scale dependence

to the algorithm via modification to the LUTs (Tian et al.,

2000; Myneni et al., in press).

5.3. Non-linearity and pixel mixture in LAI retrievals from

two land cover types

When resolution decreases from 30 to 1000 m, coarse

resolution pixels may contain fractions of different land cover

types. The coarse resolution LAI values will be influenced by

both the non-linearity of the algorithm and cover mixture. We

estimated LAI values over the 10� 10 km area from the

coarse resolution reflectance by considering the actual land

cover type (two types). Table 5 lists the mean DL values for

savanna and shrubs, and the overall estimation (shrubs + sa-

vanna). Fig. 13 shows a pixel-by-pixel comparison between

LAI from method 1 and method 2. Shrubs have higher DL

values compared with Table 4, which means that the under-

estimation becomes larger when both the non-linearity and

pixel mixture influence the retrievals. The savanna, on the

other hand, show much smaller DL values. This should be

interpreted cautiously—LAI from shrubs will always be

underestimated, but LAI from savanna could be over- or

underestimated depending on the fine scale heterogeneity

(see Appendix A). Our results from this analysis indicate that

the MODIS algorithm will underestimate LAI values by

about 5% in total from the 1-km resolution data over the

Maun site if we did not scale the algorithm to the data

resolution.

6. Concluding remarks

Validation of global data products is crucial, both to

establish the accuracy of the products for the science-user

community and to provide feedback to improve the data

processing algorithms (Cohen & Justice, 1999). Our

validation efforts are aimed not only at testing the

accuracy of the LAI product, but also to gain an under-

standing of the causes of errors, and thus provide feed-

back for potential improvement in second-generation

MODIS products. In this two-part series, we attempt to

assess the uncertainty of the MODIS LAI product via

comparisons with ground and high-resolution satellite

data, and provide guidance for field data collection and

sampling strategies.

In this paper (Part I), we first tested the LAI retrievals

from 30-m resolution ETM+ data with field measurements

from the SAFARI 2000 wet season campaign, and then

compared the validated LAI fields with those retrieved

from MODIS data (250-, 500-, and 1000-m resolutions)

simulated from ETM+ data. Because of the high variance

of LAI measurements over short distances and mismatch

of pixels between the measurements and the image, a

patch-by-patch comparison method, which is more realisti-

cally implemented on a routine basis for validation, was

proposed. Consistency between LAI retrievals from 30 m

ETM+ data and field measurements indicates good per-

formance of the algorithm. The estimation for a spatially

heterogeneous scene from the MODIS LAI algorithm

depends strongly on the spatial resolution of the scene

image. As a non-linear model, the MODIS algorithm

always underestimates the retrieved LAI from coarse

resolution reflectance data. The magnitude of underesti-

mation, dependent on the vegetation type, increases as

spatial resolution decreases or heterogeneity increases.

LAI over the Maun site will be underestimated by about

5% from 1-km MODIS data if resolution of the data is

not considered in the retrieval technique. Based on the

patch-by-patch comparison detailed here, Part II provides

sampling strategies for validation of coarse resolution

satellite products through hierarchical decomposition of

ETM+ data from Maun, Harvard Forest and Ruokulahti

Forest.
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Appendix A. Effect of non-linearity and pixel mixture on

LAI retrievals

Coarse resolution LAI can be derived by two different

methods: LAI derived from arithmetic averaging of LAI

values retrieved from fine resolution data (method 1) and

LAI retrieved from coarse resolution sensor data directly

(method 2). It is clear that the LAI value from method 1 is

the correct value. In this appendix, we discuss situations

under which the LAI values from method 2 will be under- or

overestimated.

The MODIS LAI algorithm is a non-linear and biome

type dependent model. Let us assume that f represents the

relation between LAI and surface reflectances derived from

fine resolution data, i.e., LAIi,j = fi (reflectance). Here, i

represents the land cover type (1 to 6), j represents sub-

pixel number. For a coarse resolution pixel, it could be a

pure pixel, or a mixed pixel that consists of sub-pixels

with other land cover types. For simplicity, let us assume

that there are only two sub-pixels, with reflectance of r1

and r2, respectively, in a coarse resolution pixel. Obvi-

ously, the two sub-pixels are either the same land cover

type or two different cover types. We discuss this below

separately.

A.1. One land cover type

If the two sub-pixels are from the same land cover type,

for example, savanna, we have

LAI1;1 ¼ f1ðr1Þ; ðA:1Þ

LAI1;2 ¼ f1ðr2Þ: ðA:2Þ

The mean LAI of the coarse resolution pixel in method 1

is

LAImethod 1 ¼
LAI1;1 þ LAI1;2

2
¼ f1ðr1Þ þ f1ðr2Þ

2
: ðA:3Þ

Fig. 14. Relation between LAI and surface reflectance at 30-m resolution for (a) savanna (solid line), (b) savanna (solid line) and shrubs (dash line), which

shows that the retrieved LAI from coarse resolution reflectance data is underestimated for both savanna and shrubs, and (c) savanna (solid line) and shrubs

(dash line), which shows that the retrieved LAI from the coarse resolution reflectance data is underestimated for shrubs and overestimated for savanna. See

Appendix A for further clarification.
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In method 2, the reflectance of the coarse resolution pixel

is r=(r1 + r2)/2. If the function f is used to retrieve the LAI

value, then

LAImethod 2 ¼ f1ðrÞ ¼ f1
r1 þ r2

2

� �
: ðA:4Þ

Fig. 14a shows the relation between LAI and reflectance

at 30-m resolution for savanna (solid line). It is clear that

LAImethod 1 is larger than LAImethod 2. Therefore, the

retrieved LAI directly from coarse resolution reflectance

data underestimates the LAI value.

A.2. Two different land cover types

If the two sub-pixels are of two different land cover

types, class 1 and class 2, two different functions f1 and f2
are needed to represent the relation between LAI and

reflectance at the fine resolution. Thus,

LAI1;1 ¼ f1ðr1Þ; ðA:5Þ

LAI2;2 ¼ f2ðr2Þ: ðA:6Þ

The mean LAI for the coarse resolution pixel in method 1

is

LAImethod 1 ¼
LAI1;1 þ LAI2;2

2
¼ f1ðr1Þ þ f2ðr2Þ

2
: ðA:7Þ

In method 2, the retrieved LAI value of the coarse

resolution pixel is dependent on which function, f1 and f2,

is used. It is either

LAImethod 2; class 1 ¼ f1ðrÞ ¼ f1
r1 þ r2

2

� �
; ðA:8Þ

if pixel is defined as class 1, or

LAImethod 2; class 2 ¼ f2ðrÞ ¼ f2
r1 þ r2

2

� �
; ðA:9Þ

is defined as class 2.

Fig. 14b and c shows the relation between LAI and

reflectance for class 1 (savanna, solid line), and for class 2

(shrubs, dash line), at 30-m resolution. Whether the

retrieved LAI directly from the coarse resolution reflectance

data is under- or overestimated depends on the location of

reflectance of class 1 and class 2 in the reflectance-LAI

space at the fine resolution. There are two possible cases.

A.2.1. Case A

If the location of the reflectance of class 1 and class 2 is

distributed as shown in Fig. 14b, then

LAImethod 1 > LAImethod 2; class 1 > LAImethod 2; class 2:

ðA:10Þ

This means that the retrieved LAI for the coarse reso-

lution reflectance data is underestimated irrespective of the

biome classification.

A.2.2. Case B

If the location of the reflectance of class 1 and class 2 is

distributed as shown in Fig. 14c, then

LAImethod 2; class 1 > LAImethod 1 > LAImethod 2; class 2:

ðA:11Þ

This means that the retrieved LAI directly from the

coarse resolution reflectance data is underestimated if it is

defined as class 2 or overestimated if it is defined as class 1.

These results indicate that class 2 (shrubs) is always

underestimated while class 1 (savanna) could be under- or

overestimated.
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