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Abstract − Adjoint formulation of three−dimensional radiative transfer and the Green's function
concept have been developed in neutron transport several decades ago. This is not merely yet
another method of simulating the radiative transfer process, but a method of reformulating the
problem to better incorporate existing radiation models into a particular research. In the case of
photon transport in vegetation canopies, the Green's function is a canopy radiative response to a
point monodirectional source located outside the canopy. The Green's function, therefore, has
intrinsic canopy information. It can be evaluated by using existing canopy radiation models. The
problem−dependent adjoint formulation of radiative transfer allows us to express a particular
canopy radiation effect in terms of the Green's function and, as a consequence, to better adjust
the existing models to the solution of a specific radiation problem. Application of this technique
to the retrieval of biophysical parameters from remotely sensed data (the table look−up method)
was discussed in (Kimes et al., this issue). In this paper, we will illustrate how this concept can
be applied to the estimation of cloud optical properties from ground−based measurements of
spectral zenith radiance above the vegetation canopy under broken cloud conditions. In spite of
different physical formulations of these problems, both of them use the Green's function to
describe radiation fields due to the interaction between the canopy ground and the canopy and
the canopy−clouds interaction. This technique allows us not only to extend an applicability range
of existing canopy−radiation models, but also to incorporate of various approaches developed in
other fields of physics into BRDF modeling and its applications.
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1. INTRODUCTION

Land surface processes are important components of the terrestrial climate system. Accurate
descriptions of the interaction between the surface and the atmosphere require reliable
quantitative information on the fluxes, mass, and momentum, especially over terrestrial areas,
where they are closely associated with the rates of evapotranspiration and photosynthesis. Many
of these processes can be related to the spectral reflectance of the surface. The vegetation canopy
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is classified as a special type of surface not only due to its role in the energy balance but also due
to its impact on the global carbon cycle. Its reflection results from bio−physiological, chemical
and physical processes, and is characterized by spatial, seasonal and diurnal variations. The
three−dimensional incoming radiation field and three−dimensional structure of vegetation
canopies determine these spatial and temporal variations which influence various physiological
and physical processes required for the functioning of plants. Therefore these models that
describe the three−dimensional radiation field in vegetation canopies and the three−dimensional
radiation field of incoming radiation as well as the interaction between these fields are required
by many interdisciplinary researches.

Because of the complexity and ambiguity in the interpretation of both satellite images and
ground based measurements of the solar radiation in the presence of broken clouds, scientists
prefer to deal with either clear or overcast skies. For example, land scientists use clear sky data
for estimating land cover and vegetation indices while atmospheric scientists would rather
analyze overcast sky data for retrieving optical and geometrical properties of clouds. As a result,
a large amount of data that show a complex three−dimensional structure of both clouds and
vegetation is at best substantially underexploited.

The main objectives of this paper is to demonstrate a technique developed in neutron
transport which allows us to accurately account for features of three-dimensional radiation fields
in designing algorithms for estimation of cloud optical properties from ground−based
measurements above the vegetation canopy under broken cloud conditions. Application of the
same technique to the retrieval of biophysical parameters from remotely sensed data was
discussed by (Kimes et al., this issue). In spite of different physical formulations of these
problems, both of them use the same technique to describe radiation field due to (1) the
interaction between the canopy ground and the canopy and (2) the canopy−clouds interaction.
This technique allows us not only to extend an applicability range of existing canopy−radiation
models, but also to incorporate of various approaches developed in other fields of physics into
BRDF modeling and its applications.

2. EXPANSION OF THE THREE−DIMENSIONAL RADIATIVE FIELD

Let us consider a three−dimensional scattering and absorbing medium. This medium can be
either a vegetation canopy or a cloudy layer. The monochromatic intensity Iλ(r,Ω) of a
three−dimensional radiation field at wavelength λ, at a spatial point r and in direction Ω can be
represented as a sum of two components; that is,

Iλ(r,Ω) = Ibs,λ(r,Ω) + Irest,λ(r,Ω). (2.1)

The first component, Ibs,λ, describes the radiative regime within the medium for the case of a
black surface underneath the medium (“standard problem”), and Irest,λ describes additional
radiative field due to the interaction between the underlying surface and the medium.

It is well known (e.g., Chandrasekhar, 1960, p. 273; van de Hulst, 1980, p. 64; Stamnes,
1982, Box et al., 1988) that in the case of simple slab geometry and a Lambertian surface with
albedo ρsur,λ, the additional term can be expressed as
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Here λ denotes wavelength; Fbs,λ is the downwelling flux at the medium bottom for the standard
problem; IS,λ is the solution to the transport equation with a normalized isotropic source QS = 1/π
(in sr−1) located at the medium bottom, and Rλ is the downwelling flux at the medium bottom
generated by QS. Thus one needs three independent variables to describe the radiative regime in
the plane−parallel medium. They are (1) reflectance properties of the underlying surface, which
do not depend on the medium; (2) Ibs,λ and (3) IS,λ, which are surface independent parameters
since no multiple interaction of radiation between the medium and underlying surface is possible,
i.e., these variables have intrinsic canopy information.

Somewhat more complicated techniques, adjoint formulation and Green's function concept,
have been developed in reactor physics to extend the representations (2.1) and (2.2) for the case
of three−dimensional radiation fields (Bell and Glasstone, 1970). Although in the three-
dimensional case Irest,λ cannot be expressed in such a simple form, the physical meaning of (2.1)
and (2.2) remains unchanged; that is, a three−dimensional radiation field can be expressed in
terms of ground reflectance properties which are independent on the medium; the radiation field
in the medium bounded at the bottom by a black surface; and the radiation field in the medium
generated by anisotropic heterogeneous wavelength−independent sources located at the surface
underneath the medium. Though this technique has been developed in the neutron transport
several decades ago (Bell and Glasstone, 1970), it has only recently been incorporated into an
operational algorithm for retrieval of bio−physical parameters from canopy reflectance data
provided by the MODIS (Moderate Resolution Imaging SpectroRadiometer) and MISR
(Multi−angle Imaging SpectroRadiometer) instruments aboard the Earth Observing System
Terra. (Knyazikhin et al., 1998a,b; Kimes et al., this issue).

3. PHOTON INTERACTION BETWEEN CLOUDS AND VEGETATIONS

It is well recognized that clouds vary both vertically and horizontally. Solar radiation reflected
from or transmitted through clouds is affected by these variabilities. As a result, measured
radiation includes convoluted information on both intrinsic cloud properties and radiative effects
of three−dimensional cloud structure. However, almost all radiative transfer calculations that
interpret satellite or ground−based measurements assume that clouds vary only vertically,
ignoring not only horizontal in−cloud structure but also broken cloudiness. This can lead to
misinterpretation of cloud properties. In this section we illustrate the effects of cloud
inhomogeneity on ground−based measurements of zenith radiances in the visible (VIS) and
near−IR (NIR) spectral regions. Then, we show that a simple algebraic combination of these
independent measurements can partly remove the ambiguity in the interpretation of measured
downwelling zenith radiances caused by a horizontally inhomogeneous cloud structure. A simple
example will explain the role of spectral contrast in green vegetation in removing this ambiguity.

3.1. Three−dimensional radiation effects of broken clouds

In Fig. 1a we plotted a 1000 sec data stream of simulated zenith radiances transmitted through a
broken cloud field and “measured” by upward−looking radiometer with 5 sec averaging.
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Assuming a 5 m/sec wind speed, this can be also interpreted as a 5 km fragment of zenith
radiance measured with 25 m resolution (thus the horizontal axis notations is in km). In addition
to the field of zenith radiances, in Fig. 1b we plotted a 5 km fragment of a stochastic model of
cloud optical depth that corresponds to the radiances from panel (a). Canopy BRDF was
simulated using the RPV model (Rahman et al., 1993).

First of all, we see a clear signature of tiny cloudy pixels (e.g., around 9.5 and 11 km);
next, we see a strong increase in brightness around cloud edges (11.2 km) and shadows behind
them (11.4 km). For large optical thicknesses (from 8 to 8.8 km and 12.2 to 13 km), we observe
much smoother behavior of zenith radiances than the corresponding cloud field. This is so called
“radiative smoothing” (Marshak et al., 1995) − a process that is determined by multiple
scattering and photon horizontal transport. To conclude, there are two competing radiative
processes: shadowing (or “roughening”) and smoothing; while the shadowing makes fluctuations
larger, the smoothing suppresses them.

All these three-dimensional radiative effects violate a one−to−one relationship between
optical depth and zenith radiances and make it absolutely impossible to retrieve cloud optical
thicknesses at a pixel−by−pixel basis. Figure 1c illustrates this with a scatter plot of 10240 points
of zenith radiances calculated by the Monte Carlo method for 10 realizations of a stochastic
cloud model plotted vs. cloud optical depth. (The 5 km fragment in Fig. 1a with 200 points is
extracted from one of these realizations).

Wavenumber spectrum, as a Fourier transform of an autocorrelation function (e. g.,
Papoulis, 1965), is a very informative characterization of fluctuations in both cloud liquid water
and zenith radiance fields. Figure 1d illustrates two wavenumber spectra: on the upper curve,
there is cloud optical depth (to be retrieved), while on the lower curve, measured zenith
radiances. The lower spectrum clearly illustrates the dependence of the above mentioned three-
dimensional radiative effects on scale. If the wavenumber spectrum E(k) of optical depth τ is a
power low,

E(k) ∼ k −β  , (3.1)

with a spectral exponent β ≈ 1.4, the spectrum of zenith radiances has much more complex
structure. For the large and intermediate scales (from ≈ 0.5 km to 20 km), its wavenumber
spectrum flattens indicating more energy (larger fluctuations); for small scales, the spectrum
steepens indicating smaller fluctuations. Note that the former is a signature of radiative
shadowing while the latter characterizes radiative smoothing.

In order to use zenith radiances for estimating cloud optical properties, one has to remove
the three-dimensional radiative effects of horizontal variability (shadowing and smoothing). As
long as fluctuations of cloud optical thicknesses and measured radiation are different at a certain
scale, it is impossible to reliably retrieve optical thickness at this scale. Thus, as a necessary (but
not sufficient) condition for the retrieval of cloud optical properties from the radiances
transmitted through broken clouds, one should find a nonlinear transformation that makes
wavenumber spectra similar to those of the optical depth field down to a certain scale. In the next
subsection, we demonstrate a simple transformation that partially removes three-dimensional
radiative effects and generates the desired wavenumber spectra.
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3.2. A nonlinear transformation

It is well known that because of chlorophyll in the live green leaves, vegetation strongly absorbs
solar radiation in the visible spectral region. In contrast, around 0.8 µm green leaves absorb
relatively little and the hemispherical reflectance of vegetation often exceeds 50%. Vegetation
(or spectral) indices that exploit this spectral contrast in surface reflectance are typically used in
analyzing and compressing satellite data. Amongst more than a dozen such indices (Verstraete
and Pinty, 1996), the Normalized Difference Vegetation Index (NDVI) between the NIR and red
spectral regions is, perhaps, the most widely used by scientific community, since it detects the
presents of green (live) vegetation (Tucker, 1979).

By analogy with NDVI, we define a Normalized Difference Cloud Index (NDCI) as the
ratio between the difference and the sum of two zenith radiances, INIR and IVIS, measured for two
narrow spectral bands in the VIS and NIR spectral regions and normalized by the TOA (Top of
Atmosphere) solar irradiance F0,λ at the corresponding wavelengths

VISNIR

VISNIRNDCI
II

II

+
−=   . (3.2)

3.3. An example

Figure 2a shows a 5 km fragment of measured zenith radiances at two wavelengths in the VIS
(the same as in Fig. 1a) and NIR spectral regions. Figure 2b is identical to Fig. 1b which is added
here for better visualization. The model of (Rahman et al., 1993) was used to simulate the
canopy spectral BRDF. The bold black curve is the NDCI defined in (3.2). We see that NDCI is
much more sensitive to cloud structure than either zenith radiances and shows the monotony with
respect to cloud optical thickness. A scatter plot (Fig. 2c) yields the best illustration of the
monotonic dependence of NDCI on τ. While zenith radiance INIR(τ) is strongly effected by three-
dimensional radiative effects, NDCI(τ) can be well approximated by a linear function, at least for
τ < 40. Figure 2e shows the histogram of [NDCI(τ)–Linear_fit(τ)] which exhibits Gaussian type
behavior with more than 70% points between −0.025 and 0.025.

Finally, the improvement is confirmed by the wavenumber spectra (Fig. 2d). The
wavenumber spectra of NDCI has the same slope as its cloud optical depth counterpart down to
about r = 0.4 km; below this scale, NDCI(x) is smoother than τ (x) which is clearly seen if one
compares Figs. 2a and 2b. This means that averaged over a 0.4 km scale both NDCI and τ have
similar fluctuations (autocorrelation function); thus cloud optical depth can be successfully
retrieved at this scale.

4. THEORETICAL BASIS FOR DESIGNING OF NDCI

4.1. Scale invariant models of horizontal cloud structure

Fractal (scale invariant) models can be used to simulate horizontal distribution of cloud optical
thickness (Schertzer and Lovejoy, 1987; Cahalan, 1994, Marshak et al., 1994). These models
reproduce the statistics and scale invariance (3.1) observed for cloud liquid water in marine
Stratocumulus (Cahalan and Snider, 1989, Davis et al., 1996, Marshak et al., 1997). These
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properties can be simulated using a simple three−parameter fractal model called a “bounded
cascade.” Besides average optical depth (parameter <τ>), this model controls scaling behavior of
cloud liquid water (spectral exponent β), and its variance−to−mean ratio (parameter p). As any
cascades (Mandelbrot, 1977), this model starts with a homogeneous slab of optical depth <τ>,
then transfers a fraction that depends on both parameters β and p from one half to the other in a
randomly chosen direction. The same procedure is repeated recursively at ever smaller scales
(Cahalan, 1994). As a result, after a few cascade steps we have a rich structure of horizontal
distribution of cloud liquid water; its fluctuations obey Eq. (3.1) with β typically from 1.3 to 1.6
(Davis et al., 1996).

Figures 1b and 2b show a small fragment of a bounded cascade model with parameters
<τ>=13, β=1.4, and p = 0.35 which are typical for marine stratocumulus. Inner cloud structure is
supplemented with gaps using a simple procedure described by Marshak et al. (1998). The upper
curves in Figs. 1d and 2d illustrate the wavenumber spectrum of the resulting optical depth field
averaged over 10 realizations of a cascade model.

4.2. Difference in spectral properties of green leaves and clouds

The hemispherical leaf albedo is the portion of radiation flux density incident on the leaf surface
that the leaf transmits or reflects. The typical spectral variation of leaf albedo (Fig. 3) is defined
by three distinct spectral regions (Walter−Shea and Norman, 1991), i.e., VIS (0.4 − 0.7 µm), NIR
(0.7 − 1.35 µm), and mid−IR (1.35 − 2.5 µm). If in the visible region 90−95% of solar radiation
is absorbed by a single leaf, in the NIR region it absorbs only 5−10% (the rest radiation is either
reflected or transmitted, ≈45−50% each). The hemispherical leaf albedo in the mid−IR region is
usually smaller than in the NIR. These properties are inferred from the spectral behavior of a
green, healthy leaf, and are quite stable although the magnitude of reflectance and transmittance
may vary with leaf age and among species. In addition to single leaf spectral properties, the
spectral reflectance is determined by canopy structure which is also a stable characteristic of a
given site (Ross, 1981, Myneni et al., 1989). Simple functions which relate optical properties of
individual leaves and the canopy structure to canopy spectral reflectance are presented in
(Knyazikhin et al., 1998a; Panferov et al., 1999).

In contrast to vegetation, cloud optical properties do not change much between 0.5 and
0.9 µm. For the sake of simplicity, the single scattering albedo, ϖ0, phase function asymmetry
parameter, g, and extinction coefficient, σ, are assumed to be constant in this spectral region. We
also assume that different amount of the Rayleigh scattering in this region can be removed using
a simple atmospheric correction. In addition, we assume a weak wavelength dependence in the
optical properties of aerosol in this region. As a result, the red (0.65 µm) and NIR (0.86 µm)
wavelengths would be assumed to have the same cloud optical properties but totally different
surface reflectances. In general, the above assumptions are not valid. However, the violation of
these assumptions have a much smaller effect on zenith radiances than the effect of a contrast
between canopy reflectances at red and NIR.

To get larger contrast in surface albedo, it is of interest to use an ozone free UV
wavelength, for instance, λ1=0.38 µm, where the surface is even more absorbing (95−98%) but
Rayleigh scattering is also very strong. Assuming again that cloud optical properties at 0.38 µm
and 0.86 µm are similar, and the effect of Rayleigh scattering can be accurately removed, we can
count on this UV wavelength as a prototype of a “black” surface.
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4.3 Surface−clouds interaction

In this sub−section we will use a schematic plot (Fig. 4) to illustrate the photon interaction
between clouds and vegetation. For the sake of simplicity, we assume that a vegetation canopy
underneath a three−dimensional cloudy layer can be idealized as a horizontally homogeneous
Lamebrain surface. It should be noted that this assumption is not essential for the following
analysis (Knyazikhin et al., 1998a). Using adjoint radiative transfer (e.g., Bell and Glasstone,
1970), it can be shown that the surface−cloud interaction term in Eq. (2.1) can be expressed as a
product of ρsur,λ and an integral over the whole underlying surface of the downward flux Fλ and a
radiative transfer Green’s function G, i.e.,

∫ ′′Ω′=Ω rdrrGrFrI );,()(),( sur,,rest λλλ ρ (4.1)
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where G0 is the Green’s function which describes the cloud radiative response to the point
monodirectional source Q0=δ(Ω−Ω′)δ(r−r′) at a spatial point r′ of the underlying surface. The
function G(r,Ω;r′) can be treated as a cloud radiative response at a spatial point r and in direction
Ω on the illumination from below by the isotropic source QS=π−1δ(r−r′) located at the point r′.
Integrating (2.1) over downward directions and accounting for (4.1) result in

∫ ′′′+= rdrFrrRrFrF )(),()()( 0sur,0bs,0 λλλλ ρ (4.2)

Here r0 denote a spatial point of the surface underneath the three−dimensional cloudy layer;
R(r0,r′) is the downwelling flux at the point r0 generated by the isotropic source QS. Under
conditions formulated in section 4.2, the variables G, R and Fbs,λ/F0,λ do not depend on λ. Here
F0,λ is the TOA solar irradiance. In the case of simple slab geometry (i.e., R, Fbs,λ and Fλ do not
depend on r0 and r′), the representation (2.2) can be obtained by averaging (4.1) and (4.2) over
the underlying surface and resolving the obtained equations with respect to mean values of Irest,λ
and Fλ.

This is similar to a Davis et al.’s (1997) idea of illuminating clouds by a laser beam, as a
Dirac δ−function, and measuring the resulting “spot size,” as a radiative transfer Green function.
Based on diffusion approximation, in the case of a slab geometry, Davis et al. (1997) were able
to analytically derive the relationship between cloud optical and geometrical thicknesses, from
one side, and the spot size, from the other.

4.4. NDCI

Since canopy reflectance varies considerably between VIS and NIR while cloud optical
properties can be assumed constant, the difference between two normalized zenith radiances INIR,
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and IVIS, measured at the same location is equal to the difference between surface−clouds
interaction at the same wavelengths, i. e.,

INIR − IVIS = Irest,NIR/F0,NIR – Irest,VIS/F0,VIS  (4.3)

Normalizing Eq. (4.3) by the sum of the same normalized radiances, we get the NDCI defined in
Eq. (3.2). If the downward flux F is available, it is preferable to use it for normalization [see Eqs.
(4.1) and (4.2)]. As a result, we get another NDCI, which better describes the surface−clouds
interaction where the surface serves as a diffusive wavelength independent source of photons
that illuminate horizontally variable clouds (Fig. 4). Equations (4.1) and (4.2) can be taken as a
basis for designing other spectral indices.

The evaluation of the NDCI is similar to the satellite nadir measurements in the sense that
both the NDCI and the satellite register photons emitted by a known source and reflected by
clouds. This suggests that the NDCI contains a lot of information on intrinsic cloud properties. In
other words, with the help of NDCI, we can study cloud optical and geometrical properties using
the surface as a powerful wavelength−independent reflector.

5. DISCUSSIONS AND RESEARCH PRIORITIES

The efficiency of any modeling technique must be measured against its ability to address
important scientific objectives. Requirements of various scientific communities to products of
BRDF models/data are discussed in this special issue. Among others, a very important task is to
provide correct relationships between BRDF and environmental variables (e.g., canopy structure,
cloud optical depth, etc.). Does an ideal BRDF model exist which can fully represent the suite of
variables causing the observed variation in the directional reflectance distribution of plant
canopies? We start our analysis with a theorem recently published in a journal on inverse
problems (Choulli and Stefanov, 1996). This theorem states that under some general conditions,
the three−dimensional extinction coefficient and the three−dimensional scattering phase function
can be uniquely retrieved from boundary measurements. It should be noted, however, that its
validity is lost in the case of two or one−dimensional media. This theorem indicates that there is
a one−to−one correspondence between the complex three−dimensional vegetation canopy
structure and radiation emergent from the canopy boundaries. A question then arises whether or
not this correspondence can be specified. Let us consider a hypothetical ideal instrument which
can provide ideally exact BRDF at any spatial point and in any direction, i.e., one has the
complete and accurate spatial and angular information on the radiation field leaving the canopy
through the upper boundary. The theorem, however, requires information on the upward
radiation field at the canopy bottom boundary in order to recover canopy structure. How can this
information be obtained?

A specific feature of photon interaction with vegetation lies in the fact that the probability
that a photon will interact with phytoelement does not depend on wavelength; that is, the
extinction coefficient, which is the sum of wavelength dependent scattering and absorption
coefficients, does not depend on wavelength (Ross, 1981). This property allows us to evaluate
canopy transmittance at any wavelength once this variable is known at a fixed wavelength
(Knyazikhin et al., 1998a; Panferov et al., 1999). This allow us to mathematically formulate the
problem of the link between the three−dimensional canopy structure and the BRDF, namely,
given "ideal" multiangle canopy reflectances at a minimum of two spectral bands to find the
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canopy transmittance at a fixed wavelength and canopy structure. This formulation includes two
sets of known data and two sets of unknowns, which relate all variables needed for unique
retrieval of the three−dimensional structure of the medium. It is clear that the above arguments
need a rigorous mathematical analysis.

The above arguments indicate that the canopy radiation model, which is the foundation of
any BRDF, must also provide canopy transmittance in order to obtain a closed system of
equations describing a one−to−one correspondence between biophysical parameters and
radiation emergent from the canopy boundaries. The use of the energy conservation law is a most
natural and physically well justified approach to introduce this variable into the model. A
radiative transfer model is defined to be conservative if the law of energy conservation holds true
for any elementary volume (Bass et al., 1986). Within a conservative model, radiation absorbed,
transmitted, and reflected by the canopy is always equal to radiation incident on the canopy.
However a rather wide family of canopy radiation models designed to account for the hot spot
effect conflict with the law of energy conservation (Knyazikhin et al., 1998a). Therefore, the
success of development of BRDF models and their applications depends, to a high degree, upon
being able to derive a canopy transport equation which, from the one hand, allows for the hot
spot effect, and, from the other hand, is conservative. Technique discussed here and in (Kimes et
al., this issue) was applied to two different physical problems, namely, estimation of optical
properties of broken clouds and remote sensing of vegetation canopies. In spite of different
physical formulations of these problems, both of them use the Green's function to describe
radiation field due to the interaction between the canopy ground and the canopy and the
canopy−clouds interaction. However this technique presupposes the use of conservative radiative
transfer models. Therefore, the derivation of a conservative transport equation in vegetation
canopies will help us not only to develop more sophisticated radiative transfer models, but also
to promote incorporation of various approaches developed in other fields of physics into BRDF
modeling and its applications. And this paper aims to demonstrate it.
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Figure captures

Figure 1: Three-dimensional radiative effects. (a) A 5 km fragment of zenith radiance at a
wavelength in the visible spectral region calculated by Monte Carlo method. Pixel size is 25 m,
solar zenith angle θ0=600, solar azimuth angle ϕ0 = 00

 (illumination from the left), conservative
scattering (ϖ0=1.0), Henyey−Greenstein scattering phase function. The RPV model (Rahman et
al., 1993) was used to simulate canopy BRDF for irrigated wheat. (b) A 5 km fragment of
horizontal distribution of optical thickness, τ(x), that corresponds to the zenith radiance plotted
in panel (a). 10−cascade bounded model (Section 4.1) with parameters <τ> = 13, β = 1.4 and p =
0.35 has been used. Geometrical cloud thickness is 300 m. (c) A scatter−plot of zenith radiance
I↓(τ) vs. τ. 10240 points correspond to 10 realizations of a bounded cascade model. Cloud
fraction is 84 %. (d) Wavenumber spectra of 10 realizations of cloud optical depths (above) and
zenith radiances (below). A slope β = 1.4 that corresponds to the spectral exponent of a cloud
optical depth model is added for convenience.

Figure 2: Removal of three-dimensional radiative effects. (a) A 5 km fragment of zenith
radiances at two wavelengths in the visible (the same as in Fig. 1a) and near−IR spectral regions.
Spectral index NDCI is also shown. Illumination conditions, optical and geometrical parameters
of the statistical model of cloud optical depth are the same as in Fig. 1a. (b) A 5 km fragment of
horizontal distribution of optical thickness identical to Fig. 1b. (c) A scatter plot of zenith
radiances at NIR wavelength (green dots) and the NDCI (black dots) plotted against τ. (d) The
same as in Fig. 1d but the wavenumber spectrum of the NDCI is also added. (e) The histogram of
the difference between the NDCI and the linear fit; both are plotted in panel (c).

Figure 3: Mean leaf hemispherical albedo of broadleaf forests and its standard deviation as a
function of wavelength.

Figure 4: A schematic illustration of surface−clouds interaction. I↓(r0)=Iλ(r0,Ω)/F0,λ is the
normalized zenith radiance at a point r0 of the surface underneath a cloudy layer;
I↓

bs(r0)=Ibs(r0)/F0,λ is the normalized zenith radiance at the point r0 for ideally black surface; F0,λ
is the solar irradiance spectrum at the top of the atmosphere; ρsur,λ is hemispherical surface
reflectance; T(r′)=Fλ(r′)/F0,λ is the transmittance of the cloudy layer at a point r′ of the surface;
G↓(s)=G(r0,Ω;r′), s=|r0–r′|, is the cloud radiative response on the illumination by an isotropic
source QS=1/π located at the point r′.
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